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ABSTRACT

A new primal extreme point algorithm for solving capacitated trans—

portation problems is developed in this paper. This algorithm , called the

generalized alternating path (GAP) algorithm , is a special purpose method

specifically designed to take advantage of the bipartite structure and the

often pervasive primal degeneracy of transportation problems .



1. INTRODUCTION

The purpose of this paper is to present a primal extreme point algorithm

for solving transportation problems which both circumvents and exploits degen-

eracy . The algorithm , called the generalized alternating path (GAP) algorithm ,

• • is an extension of the algorithms presented in [5, 6] and a specialization of

•

- 
the algorithm presented in [9]. We have undertaken in this paper to fill the

vacant space between more general and more specialized solution procedures

because of the importance of transportation problems as a problem class , and

also because of unique structural features of these problems that require cor-

respondingly unique adaptations to be handled efficiently. In particular , our

• development focuses on relationships that assume a special form for the trans-

portation problem , and on their implications for implementation.

• The generalized alternating path algorithm is based on the characteriza-

tion of a special type of basis , called the GAP basis. The GAP bases comprise

a subset of the bases that are capable of leading to an optimal solution if

one exists . We show by a particularly simple proof that it is sufficient to

examine only the bases that lie in this subset at each iteration of the al—

gorithm .

From a practical standpoint , we further demonstrate how the graphical structure

of these bases can be used to streamline the computer implementation of the pro-

cedure . Thus , the GAP algorithm has readily identifiable computational advan—

tages over other specializations of the primal simplex algorithm to transpor—

• tation problems [11 , 12]. These procedural innovations are also particularly

relevant to recent efforts in the literature [14, 16] to identify the merits of

alternative approaches to exploiting bipartite network structures.
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• 2.  BACKGROUND MATERIAL

• A capaci tated m x n t r anspor ta t ion  problem may be def ined as:

Minimize c . .  x ..
(i,j)tA ‘~ ‘3

subject to:

= a~ , icl={l ,2,. . ., m}
11 1• j t {j : ( i ,j ) cA }

E x1. = b ., j cJ= {l , 2 , .  . . ,n }
it { i : ( i, j ) cA }  _~ ~

0 < x . < U . . ,  (i , j ) eA
• — 1 3 —  13

where I is called the set of origin nodes , J is called the set of destination

• nodes, A is the set of admissible arcs, and C
jj 

is the cost of shipping a unit

from origin node I to destination node j.

The dual of the capacitated transportation problem may be stated as:

Maximize ~ a .R . + E b .K . + ~ U . .W .
1 1 3 3 13 1]

id jtJ (i ,j)cA

.• subject to:

R . + K . + W~ . < ~~~ (i,j) LA

• W
1~ ~ 

0, (i,j) cA

where R
~ 

and K . are called the node potentials of the origin and destination

nodes, respectively.

A familiarity with graphical interpretations of the transportation problem

and the operations of the primal simplex method specialized to this framework is

• especially useful for understanding the results of this paper. We summarize these

ideas in this section for completeness [1 , 2, 4, 10, 12, 15, 19, 201. At the same

t ime, we will introduce terminology that will subsequently he used to characterize

the GAP al gorithm.
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The transportation problem may be represen ted as a bipartite graph consist—

ing of a se t of origin nodes with supplies a. and a set of destination nodes

with demands b . . Directed arcs from origin nodes to destination nodes accommo-

date the transmission of flow and incur a cost if flow exists. The objective

is to determine a set of arc flows that satisfy the supply, demand , and capacity

restrictions at minimum total cost.

A bounded variable simplex basis for an m x n problem corresponds to a

spanning tree with m + n — 1 arcs. The flows on many of the basic arcs are

j frequently equal to zero or the upper bounds for these arcs. This situation

provides a degenerate basic solution , and sometimes causes the simplex method

to examine several alternative bases for the same extreme point before moving

to an adjacent extreme point.

In solution procedures based on a graphical representation , the bases of

the simplex method for transportation problems are normally treated as rooted

trees [1,2,4,8,10,11,12 ,13 ,15,18,19,20]. Conceptually, the roo t node may he

thought of as the highest node in the tree with all of the other nodes hang ing

below it. Those nodes in the unique path from any given node I to the root are

called the ancestors of node i, and the immediate ancestor of node I is called

its predecessor.

Figure 1 illustrates a rooted basis tree , the predecessors of the nodes ,

and the basic flow values , for a 3 x 6 transportation problem. Notatio ially,

01 denotes the ith origin node and Dj denotes the jth destination node. The

aumber beside each link (arc) in the basis tree indicates the flow on this arc

imparted by the basic solution . (Note that the nonilasic arcs at their upper

bound , are not shown.) Predecessors of nodes are identifi ed in the NODE/PREDE—

CESSOR array . For example , as seen from this array , the predecess or o f origin

node 2 is destination node 1. The root of the tree is node 1)1 and has no pre-

decessor.
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01 Node Predecessor

01 None

0 0 8 02 Dl

03 Dl

Dl 01

Dl D2 D3 D2 01

D3 01
D4 03

D5 03

D6 03

• 02 03

o 0 10

D6 D5 D4

Figure 1 — Rooted Basis Tree
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It is important to note that the direction of the links in Figure 1 cor—

- 

• respond to the orientat ion induced by the predecessor ordering and do not

necessarily correspond to the direction of the basis arcs in the transportation

problem. However , the direction of the basic arcs are known from the bipartite

property of the transportation problem; i.e., all problem arcs lead from or igin

nodes to destination nodes.

In subsequent sections the term 0—P link and D—O link will be used to

refer to links in a rooted basis tree that are directed from an origin node to

a des tinat ion node and vice versa , according to the orientation imparted to the

basic arcs by the predecessor indexing. For examp le , in Figure 1, O1—D1 is an

O—D link while D1—02 is a D—O link. Additionally, basic arc s with a flow grea ter

than 0 will be referred to as lower 
~~~~~~ 

links and bas ic arcs with a flow less

than their upper bounds will be called upp~ r leeway links. Basic arcs that are

bo th lower and upper leeway links will he called double leeway links.

Basis Exchanges

The fundamental pivot or basis exchange , step of the simplex method will

now be briefly reviewed in the graphical setting. Assume that a feasible

starting basis has been determined and is represented as a rooted tree. To

evaluate the nonbasis arcs to determine whether any of them “price out ”

profitabl y, and therefore are candidates to enter the bas is , it is necessary

to determine values for the dual variables R1, id , and K 1, jcJ , which sat isf y

complementary slackness; i.e., which yield R1 + = c1~ f r  each basic arc .

~ 

There is a unique dual var iable associa ted wi th each node in the basis

tree . For this reason the dual variables——or their values——are often referred

to as node potentials. Because of redundancy in the defining equations of the

transportation problem (and in network problems generally), one node po tenti al

may be specified arbitrarily. The root node is customaril y selected for this

- - --—— • - -- •~~~ -~~~~~
•-- -•—-

~~~~~~~~~
.-•-—- -S •~~~ • __S___ .
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purpose and assigned a potential of zero , wh~ reupon the potentials of the

other  nodes are immediate ly  determined in a cascading  f a s h i o n  b y moving down

the tree and identifying the value for each node from its predecessor using

the equation R. + K. = C .. . Highly efficien t labeling procedures for tra—

versing the tree to initialize and update these node potential values are

described in [1,2,4,10,15,19,20].

A feasible basic solution is optimal if the updated cost coefficient

Tr . (= R . + K . — c ..) is nonpositive for all the nonbasic arcs with flow equal
13 1 3 ~J

zero and nonnegative for all nonbasic arcs with flow equal to U1. . If the

solution is not op t imal , then a nonbas ic arc which viola tes the nonnega t ivi ty

or nonpositivity requirement for ir .. is selected to enter the basis. If the

flow on the selected arc is zero (U..), then the simplex method attempts to

increase (decrease) this flow. The arc to leave the basis is determined by:

(1) finding the unique path in the basis tree , called the basis equ ivalent

~~~~ which connects the two nodes of the entering arc , and (2) isolating a

blocking arc in this path whose flow goes to zero or its upper bound ahead

of~ or at least as soon as) any others as a result of increasing or de~ reas ing

the flow on the entering arc .

In the basis equivalent path all arcs an even number of links away from

the entering arc are called even arcs , and all arcs an odd number of links away

are called odd arcs. (The incoming arc itself is considered the “0 arc ,” and

hence is even). An increase (decrease) in the flow of the incoming arc causes

a corresponding increase (decrease) in the flow of all even arcs and a corres—

ponding decrease (increase) in the flow of all odd arcs. Thus , if an odd ar c

already has a 0 flow or an even arc alread y has a U~~. f low , then such an arc 
•

qualifies as a blocking arc and the incoming arc cannot be assigned a nonzero

flow change .
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• To illustrate, assume that the starting basis is the one given in Figure 1

and the entering arc is (02 ,D2). The basis equivalent path for (02,D2) is

D2—Ol—Dl—02. Note that this path can be easily determined by tracing the pre-

decessors of 02 and D2 to their point of intersection [10 ,13,20]. As flow is

increased on the entering arc the flow on the arc (Ol ,D2), which is an odd number

of links away , must be decreased . However, its flow is already zero , and hence

(0l ,D2) qualifies as a blocking arc. When arc (02,D2) is brought into the basis,

arc (0l ,D2) must be dropped (since there are no other blocking arcs in this

case). In addition , the pivo t (or basis exchange ) is degenera te since no flow

increase occurs.

Once the entering and leaving arcs are known, the basis exchange is completed

simply by updating the flow values on the basis equivalent path and determining

new node potentials for the new basis tree . Only a subse t of the node potentials

• change during a p ivot and these can be upda ted ra ther than being de termined

from scratch .

To update the node potentials , assume that the nonbasic arc (p,q) is to

enter into the basis and the basic arc (r,s) is to leave the basis. If arc

(r ,s) is deleted from the basis (before adding arc (p,q), two sub trees are

formed , each containing one of the two nodes of the incoming arc (p,q). Let

K denote the subtree which does not contain the root node of the full basis.

The node potentials for the new basis may be obtained [~ O} by upda ting onl y

those po tentials of the nodes in K, as follows . If p is in K, sub trac t

= R + K — c f rom the po ten t ia l s  of each or ig in  node in K and add ~ top q pq

the po t en t i a l  of each d e s t i n a t i o n  node in K.  Otherwise , q is in K and —6 is

used in the above operations. (Note that 6 > 0 if arc (p,q) is nonbasic with

zero flow and 6 < 0 if arc ( p , q )  is nonbas ic  wi th  U f l o w ) .
pq
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3. GENERALIZED ALTERNATING PATH BASIS DEFINITION AND CONSTRUCTION

The new generalized alternating path algorithm for transportation problems

developed in this section is based upon the primal simp lex me thod as des cribed

above , and extends the special alternating path algorithm for the assignment

and semi—assignment problcms [5,6]. The major mathematical distinction of the

• new method in contrast to the simplex method , is that it does not consider all

feasible bases to be candidates for progressing to an optimal basis. That is,

the simplex method allows a feasible spanning tree of any structure whatsoever

to be included in the se t of those that are eligible for cons idera tion as

“improving bases” along the path to optimality. However , it will be shown

that if a transportation problem has an optimal solution then it also has an

optimal solution with a unique basis tree structure , dubbed the generalized

• alternating path (GAP) structure . Furthermore , we will show that it is possible

to restrict attention at each step to bases with this structure . In particular ,

• the proposed algor ithm is a procedure des igned to exploit the properties of

the GAP basis structure in a manner that substantially reduces the impact of

degeneracy and the number of arithmetic operations required to solve the trans-

portation problem.

Definition: A rooted basis tree for a capacitated transportation problem is

a generalized alternating p~ç~ (GAP) ba..is if

1. The root node is an origin node .

2. All O—D links are lower leeway links .

• 3. All D—O links are upper leeway links .

Definition: A generalized alternating p~çJ~ (GAP) is an elementary path such

that all odd arcs are lower leeway links and all even arcs are upper leeway

links , or vice versa. (No restriction is placed on what type of arc should

appear first , or on the total number of arcs in the path.) Thus , in the GAP

• basis , every path from a given node to an ancestor is a generaUzed alternating path.

~~~~~~~~
-•-p---

~ -~- — •  ~~— — — -~ - .“S-~-• ---— -. —‘“--•~~ - - . - • . --. -•----•- --- •---•••---•• -~~~-- — • - —~ •-------- ——-~~~ --—--- •
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Lemma 1: Given an arbi trary feasible extreme point solution to a capacitated

-• transpor tation problem , it is possible to identif y a GAP basis , possibly in-

cluding artificial arcs with 0 flows , that assigns the same flows to all ad—

• missible arcs.

Rather than prove the preceding lemma formally, we will establish its

val idity by ske tching one of several possible ways to construct a CAP basis with

the indicated property.

A CAP Basis Cons truc tion

1) To begin , exclude from consideration all arcs whose flows equal their upper

or lower bounds. All remaining arcs are both lower leeway and upper leeway l i nk s .

(These may be called double leeway links , as contrasted to the single leeway

links that have been temporarily excluded from consideration.)

2) The subgraph induced by the remaining arcs is a forest (plus possibly s~~ne

isolated nodes). Select any origin node as a root node for each tree in the

fores t , and establish the customary predecessor indexing [10, 13] for the tree .

The result is a se t of trees , each member of which has the GAP structure.

3) All isolated destination nodes can now be included in this forest as follows .

There must be at least one saturated arc (i.e., whose flow equals it s upper

bound) that connects to any given isolated destination node (assuming without

loss of generality that all b . # 0). Add one such arc and orient it from its
-3

orig in node to the destination node (i.e., making the origin node the predecessor) .

This preserves the GAP structure (assuming, again without loss of general ity ,

that no U .. = 0).
13

4) The trees of the forest and any isola ted or igin nodes may be strung toge ther

as follows . Establish the predecessor indexing for ill trees. Select any two

trees , or one tree and an isolated origin node. Then select an arc (possibly an

L ~ ~~~~~~~~~~~~~~~ • • • .~~~~~ .-—--~.- • ~~~~~~~~~~~~~~ • •~~~~~~ • • •—. —. ••
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artificial arc) at its lower bound which connects the root of one of the trees

• •

. (or the isolated origin node) to a destination node of the other tree. Orient

th is arc as a D—O link , and then repeat the process until the entire graph is

connected.

The result of the foregoing process is a GAP basis since each added arc

in Step 4 has upper leeway, and fur ther , the charac terization of this arc as a

D—0 link does not require that any previous arc change its orientation.

The GAP bases clearly constitute only a subset of those that correspond to

a given degenerate extreme point solution——i.e. , under degeneracy , many base s

exist that cannot be transformed into a GAP basis by any or ientation of the ar cs

or by swapping the designation of the origin nodes and the destination nodes .

In fact , we may make the following observation.

• Remark 1: A basis tha t satisfies any of the following properties cannot be

transformed into a GAP basis: (1) there exists a node with two incident basic

arcs with 0 flow and two incident basic arcs with saturating flow; (2) there

exists an” subpath of the basis of three successive arcs tha t all have 0 flows

or all have saturating flow ; (3) there exists any origin node and any destinatien

node such that both have more than one incident 0—flow arc , or bo th have mor e

than one incident saturated arc (this includes (2) as a special case).

The torgoing remark discloses that the CAP basis structure is indeed hi gh l y

restr ictive .

4 . IMPORTANT PROPERT I  [S OF GAP BASES

We will show that for any choice of an incoming nonbasic arc in a basis

exchange (pivot) step for a primal simplex method , there is a unique outgoing

arc which can be selected to leave the basis that will maintain primal feasi—

bility and also preserve the CAP basis structure. This un i que arc must be

~ 

•
~~~~~~~~~~

• - • •
~~~~
_ • •  •

~~~~

___
. • —-—

~~
-
~
--- •. 

~~~~~~~~~~~
• -

~~~~
— •

~~~ 
—•-—--—-- • .- •- —4
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selected by a different rule in each of four different situations . To charac—

• - - 

.
‘ terize these situations and their appropriate rules , we introduce the following

terminology .

• Arc (p,q) will denote the incoming arc . The unique intersection node on

the predecessor paths from nodes Op and Dq to the root node will be denoted by

~~~, where ~ may in some instances be equal to Op or Dq. The predecessor paths

fr om Op to ~ and Dq to ~ will be deno ted by ~—Op and ~—Dq , respectively.

Note that one of these two pa ths may consis t of only the node ~ itself.

It is convenient to augment each of the paths a—Op and ~—Dq with arc (p,q)

such that it is an 0—D link and D—0 link in the augmented paths ~—Op and ~—Dq ,

respec tively. The augmented ~—Op and ~—Dq paths will be denoted by ~—Op and

~—Dq. The terms lower and higher links will be used to refer to arcs in the ~-Dq

and ~—0p paths according to the natural orientation imparted by the predecessor

indexing where the predecessor of any node X is considered to be above node X

• itself. Thus, the lowest link in each path is arc (p,q) and the highes t link
-• 

- in each pa th are the arcs connec ted to node ~~~.

• The rules for selecting the outgoing arc will now be itemized according

to the relevant poss ibilit ies:

• 
• 

I. The incoming arc (p,q) is a 0—flow arc and 7rpq~~_~~. (In this case the primal

simplex method undertakes to increase the flow on arc (p,q). If ~ is the amount

of flow change , then all D—0 links on the ~—Dq path and all O—D links on the

~—Op pa th increase their flow by ,~~. All other arcs on the paths decrease their

I flow by ~~~.) (No te that arc (p,q) is in fact a D—0 link on the ~—Dq path and an

I 0—D link on the a—Op path——hence all arcs on a given pa th of the same type as

- 

(p,q) change their flow in the same way.)
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A. If any arc on the B—Op path reaches its upper or lower bound (i.e.,

blocks addit ional  flow change) s t r i c t ly before  any arc on the Z—Dq path reaches

its upper or lower bound , then the lowest arc on the a—Op path that thus restricts

~

=. the f low change is the outgoing arc .

B. If any arc on the B—Dq path reaches its upper or lower bound , (i.e.,

• blocks flow change) at the same time as or before  any arc on the B—Op pa th

reaches i ts  upper or lower bound , then the highest arc on the B—Dq path that

thus restricts the flow change is the outgoing arc.  (Note that  if arc ( p , q)

is one of the first arcs to hit its limit , then this automatically qualifies as

case I . B . )

• II. The incoming arc (p,g) is an arc with saturated flow and rpq ~..P• (The

primal simplex method thus undertakes to decrease the flow on arc (p,q). If

the f low change is t~ (in absolute value) then all D—O links on the B—Dq path

and all O—D links on the B—O p path are decreased by t~. The remaining arcs on

these paths increase their flow by A .)

A. If  any arc on the B—Dq path reaches its upper or lower bound (blocks

flow change ) s tric tly before any arc on the B—Op path , then the lowest arc on

the B-Dq path that thus restricts the flow change is the outgoing arc .

B. I f  any arc on the B—Op pa th  reaches a bound at the same time or before

an arc on the  B— Dq p a t h , then the h i ghest such arc on the B—Op path is the

ou tgo ing  ;irc .

The following lemm a will be used to prove that the foregoing rules preserve ~~~

the  GAl’ nas  Ic St r i t c  t u r e  .

Lemma 2: Ii Case I.B . or I l . B .  a p p l i e s , then the pivot is always nondegenerate .

[‘r o o t :  I i i  ( e-.t I .R ., an .IFe on the  ~—Dq p a t h  provides the l i m i t a t i o n  on the

f E o w  L h . I n y t  . Ku t  ~~1 n I e each 0—D l i n k  has lower leeway and is being decreased



— —, ,-,- .•,- .~~~~
--, - • • - • —~~~~ -~~~ ••• --

13

• • by A on this path , and since each D—O l ink has upper leeway and is being in—

*- • creased by A on this path , the val ue of A allowed by this  path  must be pos i t ive .

• Similar analysis applies to Case II.B., interchanging the roles of increases

• and decreases and appl y ing them to the B—O p path .

The significance of this lemma is apparent because if a shortcut procedure

is constructed to identify cases I.B. and II.B., this provides a method of under-

taking to make nondegenerate pivots.

Lemma 3: The rules l.A ., I.B., II.A., II.B. preserve the GAP basis structure ,

and mo reover , a re the only rules that can if the root node is unchanged.

P roof: The lemma will be established for  cases l.A. and I . B .  The proof for

cases II.A. and II.B. is similar . Suppose l.A . applies and the indicated rule

is followed. It is important to note that maintaining the same root node

• implies that the only links which will change their 0—D and D—0 link status

in the new ba sic are the ar cs in the B—Op path below the outgoing arc. Thus ,

the proo f amounts to demonstrating that the links on the basic equivalent path

sat isf y the def ini t ion of a GAP basis after the basis exchange. First observe

that all links above the discarded arc on the B—O p path retain their or ienta t ion

and their s ta tus , because the 0—P links on this path only increase their flow

and the D—O links only decrease their flow , appropriately maintaining the lower
•

and upper leeway conditions . Further , all arcs on the B—Dq path , including

• (p,q), retain their status by assumption since none were driven to a contrary

bound . And since by assumption no arcs below the selected outgoing arc on the

• B—Op path are at their bounds, these a r cs are do uble leeway ar cs and th us

qualify as arcs of the opposite status . Thus the standard rule of [10,131 for

re—orienting the arcs of the B—O p path , and for attaching arc (p,q) as a D—O

• link , preserves the GAP structure as desired .
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On the other hand , if I .E .  applies , the n no arc on the B—Op path changes

it s status . Further , nothing above the outgoing arc on the B—Dq path changes

i ts  status because no f lows are driven to contrary bounds. But every arc below

the outgoing arc can change i ts s ta tus  because , by Lemma 2 , the f low change is

posi t ive , and thus each of these a rcs tha t previously had upper leeway now has

lower leeway , and vice versa. Thus , once again , the rule of [10,131 that

reverses the orientation of these arcs (if any exist——i.e., arc (p,q) itself

or the first arc above it may be the outgoing arc) preserves the GAP s t ruc ture .

If a rc (p ,q )  is not both the incoming and outgoing arc , the n it receives the

proper orientation as an O— D link. Finally, the foregoing obse rvations disclose

that no other choice of an outgoing arc will work , because it would create an

0—P or D—O link without the appropriate leeway on one of the two paths . This

completes the proof .

5. GENERALIZED ALTERNATING PATH (GAP) ALGORITHM

On the basis of t he p receding remarks , the rules of the GAP al gori thm ca n

be stated in an extreme ly simple fashion.

1. Select any f~ asible GAP basis for the capacitated transportation

problem.

2. Successively appl y the simplex pivot step keepi ng the root node f ixed

and p icking t he link to leave according to rules I and I T .

• The results previously established impl y that  the GAP al gor i thm wi l l  pro-

ceed through a sequence of GAP bases, bypassing all other basis structures.

Further , these results show that a “next” GAP basis is always accessible to a

given GAP basis, so that the method will not be compelled to stop prematurely

withou t  being able to carry out a pivot before  the optimalitv criteria are

sa t is f ied .

_~ .
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The issue that remains to be resolved , then , is whether the method may

prog ress through a closed ci rcle of GAP bases wi thout  breaking out , and thus

fai l  to converge . It will be shown that  this cannot happen , and that , in

fact , the GAP al gorithm is finitely converging without any reliance upon ex-

te rnal techniques such as perturbation , o r lexicographical orde r ing , as is the

• ordina ry simp lex method. Further , this result does not require any restric-

tions on the choice of the incoming variable .  Most impor tan t ly ,  it w i l l  be

shown that the form of convergence of the GAP algorithm has a particularly

strong character , in which ori gin and destination node potentials each change

in a uniform direction throughout any sequence of degenerate pivots .

Our nex t resul t is the prelude to the main convergence theorem , which

requires no use of pe r turbat ion and no res tr ic t ion on the choice of the in—

• coming arc.

Lemma 4: The pivot step that  creates one GAP basis from another causes the

node potentials  to change in the fol lowing manner (holding the root node and

its node potent ial  cons tan t ) :

( i )  For cases l .A .  and I I . A . :  The potent ials  for a subset of the ori g in

nodes strictly decrease and the potentials for a subset of the destination

• 
nodes strictly increase , where at least one of these subsets is nonempty (the

first for l.A . and the second for II.A.). All other node potentials are un-

changed.

(ii) For cases I.B. and II.B.: The potentials for a subset of origin

• nodes st r i c t l y inc rease an d the potentials for a subset of destination nodes

st r ic t ly  decrease . At least one of these subsets is nonempty ( the  f i r s t  for

I l . B .  and the second for  I . B . ) ,  unless arc ( p , q )  is the outgoing arc , in which

case they are both empty.  All other  po ten t i a l s  remain unchanged.

~~~~ • • •• •—.•~~~~~~~~~~~~~
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Proof: No node potentials change when arc (p,q) is both the incoming and out—

going arc . Thus assume that arc (p,q) is not the outgoing arc . In this case ,

as a l ready  discussed , the node potent ia l  values tha t change are res t r i c ted  to

those associated with subtree K. By this procedure , if subtree K contains the

origin node of the entering arc then 6 is subtracted from all origin node

pote nt ials  in K and 6 is added to all des t inat ion node potent ia ls .  On the

other hand , if subtree K contains the destination node of the entering arc

then 6 is subtracted from all destination nodes and 6 is added to all ori gin

• node potentials , where 6 = n = c — R — K . The assertations (i) and (ii)pq pq p q

follow at once by observing that Oc}~ holds for cases l.A . and 1II.B. and

P CK in cases I.B. and II.A.

Ou r main result may be stated as foll ows :

• Theorem: The primal GAP basis algorithm is finite and independent of the choice

of incoming arc .

Proof: By Lemma 2, as long as case I.B. or II.B. holds , the method makes non—

degenerate pivots , of which there are a finite number. We show that the number

of degenerate pivots that can occur in unbroken succession is also finite. In

• particular , these pivots must all occur for case l.A. or II.A. But by Lemma 4,

the nod e po ten tials are chang ing in a uniform direction throughout each step.

Since the root node maintains a constant potential and the values of the other

potentials are thus uniquely determined for any given basi s, it follows that

no basis can repeat during this succession of pivots , comp le ting the proof.

Implemen tation Considerations

The rules l.A ., l.B., Il.A. and Il.B. of the GAP transportation algorithm

a l l  iden t if y the arc to leave the basis as either the hi ghest or lowest quali—

L
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f y ing arc on a p a r t i c u l a r  segment of the basis eq u i v a l e n t  pa th , t h u s  t r ans—

lat i n g  a complex set of i n t e r a c t i o n s  into  a p a r t i c u l a r ly  s i m p le  p r e scr i p t i o n

f o r  implementa t ion . This p resc r ip t i o n  is f u l l y c o m p at i b l e  w i t h  the  use of

the  specia l ized  labe l ing  procedures  deve loped  fo r  imp l e m e n t i n g  p r ima l n e t w o r k

a lgor i thms  [4 , 10 , 15 , 20] and conseq uen t ly , the s t ron g  convergence p r o p i r t v

of the GAP al gor i thm is not  gained at  the expense ot abandoning o t h e r  means

fo r  a cce l e r a t i ng  the so lu t ion  process.

Further , it is especia l ly  si g n i f i c a n t  t h a t  in the o n l \  cases t h a t  a f f o r d

the oppor tun i ty  fo r  a degenerate pivot  ( l . A .  and I I . A . ) ,  the  arc to  leave the

basis is the lowest that qualifies on the specified path segment .  Th i s  means

that , by the cus tomary trace of predeces sors , the first arc encountered t h a t

determines  the p ivo t to be degenerate  is the one to drop . For p rac tic a l pr-

blems , in which degenerate  p ivots  have been r epo r ted  to  constit ite ~ or

more of the total  i t e ra t ions, this  f e a t u r e  is p a r t i c u la r l y  c o nv e n i e n t .  M o r e —

over , there  is no disadvantage to the ru le  tha t  p r e s c r i be s d r o p p i n g  t h e  hi gh es t

qual i f y ing arc when the p ivot is nondegenerate , because in this instance it is

necessary to conduct a full trace of the arcs of the basis equivalent path in

• any event .  Thus , in br ie f , the uni que form of the GAP a l g o r i t h m  fo r  the  ~~~~~

c i t a t ed  t r an spo r t a t i on  problem is ideal ly  su i ted  to the  use of i m p l e m e n t a t i o n

• schemes desi gned to minimize the calc ulations at each itera t ion, wh i le en io v in g

the b e n e f i t s  of the s t rong  convergence p rope r ty  for  c i r c u m s c r i b i n g  the  t o t a l

number of degenerate steps .

•• ~~~~~~• • ~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 



IS

REFERENCES

1. Analy sis , Resear ch, and Computation , Inc ., “Developme nt and Computational
Testing on Large Scale Primal Simp lex Ne twork Codes ,’ ARC Technical
Research Report , l’ .O. Box -‘+067 , Aus t in , TX 78765 (1974).

• 2. R. S. Barr , “Streaml ining Primal S implex Transportation Codes ,” Research
Repor t to appear, Center for Cyberne t ic Studies , University of Texas ,
A u s t i n , Texas.

3. R.  S. Bar r , F. Clove r , and D. K l i n g m an , “An [mproved Vers ion of the Out—
o f — K i l t e r  Method and a Compara t ive  S tudy  of Computer Codes , ”
Mathemat ica l  Programming , 7 , 1, 60—87 ( 1974 ) .

4 .  R. S. Barr , F. Clover , and D. Klingman , “Enhancements to Spanning Tree
Label ing Procedures fo r  Network Opt imiza t ion , ” Research Report  CCS
262 , Center fo r  Cyberne t ic  Studies , Univers i ty  of Texas at Aus t in ,
Aus t in , Texas 78712 ( 1976) .

5. R. S. Barr , F. Glover , and D. Kl ingman , “The Al te rna t ing  Basis Al gor i thm
fo r  Assignment Problems , ” Research Report  CCS 263 , Center  for  Cy ber—
ne t i c  Studies , Un ive r s i t y  of Texas at Aus t in , Texas 78712 (1976) .

• 6. R.  S. Barr , F. Glover , and  D. lKl ingm an , “A New A l t e r n a t i n g  Basis Al g o r i t h m
fu r  Semi—Assi gnment Ne tworks , ” Research Repor t  CCS 264 , Center  fo r
Cy b erneLic  S tud ies , Un ive r s i t y  of Texas at Aus t in , A u s t i n , Texas 78712

• (1976) .

7. C. E .  Bennington , “An E f f i c i e n t  Minimal  Cost Flow A l g o r i t h m , ” Management
Science, 19 , 9 , 1021—1051 (1973) .

8. C. B r a d l e y ,  C. Brown , G. Graves , “Tai lor ing Pr imal  Network Codes to
Classes of Problems w i t h  Common S t r u c t u r e , ’ ORSA/TIMS conference,
Las Vegas (1975) .

9. W. H. Cunningham , “A Network Simplex Method ,” Technical Report No. 207.
Department of Mathematical Sciences , J ohn Hop kins University (1974).

10. F. Clover , D. Karney, and D. Klingman , “A ugmented Predecessor Index Method
for Loca tion S tepp ing—S tone Paths and Assi~ ning Dual Prices in Distri—
bution Problems ,” Tran~p2Ftation Science , , 1 , 171—181 (1972).

ii. F. Clove r , D. Karney , and D. K1 ingma n , “Imp l ementation and C o m p u t a t i o n a l
Study on Start Procedures and Basic Change Criteria for a Prima l
Network Code ,” Networks, 4, 3 , 191—2 12 (1974).

12. F. Glover , D. Karney, D. Klingman , and A. Nap ier , “A Computational Study
- • on Start Procedures , Basis Change Criteria , and Solution Algorithms

— for Transpor ta t ion Problems ,” Mana~~ ment Science , 20 , 6, 793—81 9 (l~~73)

_ _



13. F. Clover and D. Klingman , “Locat ing Stepp ing—Stone Paths in Dis t r ibut ion
Problems Via the Predecessor Index Method , ” Transpor ta t ion  Science,
4, 220—26 (1970).

- •  14. F. Clover and D. K1incina~L , “Omissions and Prac tical Misconceptions in the
Hatch Article Co~• arin~ Network Al gor i thms , ” Research Report  CCS 270 ,
Center for  Cyb e rn er i c  Studies , U n i v e r s i t y  of Texas at Aus t in , A u s t i n ,
Texas 78712 (197e).

15. F. Clover , D. Klingman , and J.  S t u t z , “Augmented Threaded Index Method
for Network Optimization ,” INFOR, 12 , 3 , 293-298 ( 1 9 7 4 ) .

16. R. S. Hatch , “Bench Marks Comparing Transpor ta t ion  Codes based on Primal
Simplex and Primal—Dual Algori thms , ” Operat ions Research, 23 , 6 ,
1167—1171 (1975).

17. D. Klingman , A. Nap ier, and •~~~. S t u t z , “NETGEN—A Program for  Generat ing
Large Scale (Un)Capacitated Assignment , Transportation , and Minimum
Cost Flow Network Problems ,” Management Science, 20, 5,814—822 (1974).

18. J. Mulvey, “Column Weighting Factors and Other Enhancements to the Aug-
mented Threaded Index Method for Network Optimization ,” Joint ORSA/
TIMS Conference , San Juan, Puerto Rico (1974).

19. V. Srinivasan and C. L. Thompson , “Benefit—Cost Analysis of Coding Techniques
for the Primal Transportation Algorithm ,” JACM, 20, 194—213 (1973).

20. V. Srinivasan and G. L. Thompson. “Accelera ted Algorithms fcr Labeling and
Relabeling of Trees with Application for Distribution Problems ,”

• JACM, 19, 4, 712—726 (1972).

•



—.—--.—•-..--,--••—-- —,——‘ — — ‘ - —— ••— - — •
~~
— ••----

Uncla ssif ied
—

C’OCUMENT CONTROL DA TA R & D
Serurit , c b s  , ,f , ca t ,on  of Is • :,,,,h ,.? . t s ~~~ . 1 arid ,s,dez,,r ,~ . . rs , ,ot , r t ,s ,n ts r - I  be en? ,r , j ,r ?,. n II. •,bt’r.jII repor t  I t  I t  ssf zc ,f I

I O k I , S N A T I N G  .rc l i v ? ?  (CorporTh • . r s l ’iot) 
•• - 2.~. Y Y L P O R T  5 L C U i ~ s T Y  C L A S sI~ C A T I O N

Center for Cybernetic Studies Unclass i f ied

The University of Texas 
- 

2b. G RO U P

R E P O R T  T I T L E

The Generalized Al te rna t ing  Path Algo r i t hm for Transportation Problems

4 DI -~ c P r .  - r I v  ‘I )  1 ~ ( Tvpr of r~ • r I  • snd • inc In . t h t I o 3)

____________ - 
- -n~ee . nss d r ~ie , r-  a ? . last rr~,si

Richard  S. Barr
Fred Glover
Darwin Klingman _________________________________________

~ ~~~~~~~~~~~ 75. T O T A L  NO. OF P A G E S  lb. NO. OF RE~~ S

_____ 

February  1977 19 20
~ 5• CON t~~~C ~~~~~~~~~~ NO ~a. O R I G I N A T O R ~ S R E P O R T  N U MB E R (S )

N00014 -76-C-0383; N 000 l4-75-C -O6 16;O56~ Center for Cybe r netic Studies
b. PRO.  E C T  Research  Report  CCS 282 -

N R 0 4 7 - 0 2 l
c . Sb. O T H E R  R E P O R T  N O( S )  (Any other numbers that may be assignrd

this report)

d.

t O .  D I S T I l l  B U r r O ’ . S T A T s - e N c

• This doc ument has been approved for public release and sale;
• i ts dis t r ibut ion is unl imited.

I I .  S U P F L E M E N~~~A 9 Y  NO l E T  12 S P O N S O R I N G  M I L I T A R Y  A C T I V I T Y

Gffice of Naval  Research (Code 434 )
Washington, D.C.

I i  A B S T R A C T

A new primal  ext reme point algori thm for solving capacitated
t ranspor ta t ion  problems is developed in this pape r . This algori thm ,
called the generalized alternating path (GA P) algori thm, is a special
purpose method specifically designed to take advantage of the bipar t i te
s t ructure  and the often pervasive pr imal  degeneracy of transportation
problems.

• •

1

~ 

~~~~~~~ 
(PAGE H Unclassified



puu~~~~~ _ .. .~~~~
. , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• - - - -  ,i’,I -

1 4  L 5 5 r ~ A 
— 

L I N e  B
I t F Y  ~~O R O S  ______ ______ ________________________

R O L E  W T  R O L E!  .51 u O L E  I . 5 1

Transportation

- • Network

Linear Programming

I Graphs

•

~~i
.

L I  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_
DD ‘~‘~..1473 ( B A

S /~ 0 ) 0~~— - 14 . 6  eø o Sor ur r ’v ( a s~~~f I c- a~~Is -rn 
~~. •

_ _  -
~~~~~~~~ - .--~~~~~~~~ - -t-~~ —- - •. —- -~~~~~~~~~-—~~~~~~

--~~~—-•—-— - — • -


